
Math 2A – Vector Calculus – Fall ’09 – Chapter 10 Test  Name________________ 

Show your work for credit.  Write all responses on separate paper. Do not use a calculator. 

 

1. Show that the parameterization of the intersection of the cylinder x
2
 + y

2
 = 1 with the parabolic 

sheet z = 2xy can be parameterized by cos ,sin ,sin 2r t t t t . 

 

2. Suppose the position (in meters) of a particle at time t (in seconds) is given by  

cos2 ,cos ,sinr t t t t  

a. Simplify an expression for the speed of the particle at time t. 

b. Find the distance the particle has traveled as t goes from 0 to π. 

Hint: to do the integral, it may be helpful to recall that 2 1 cos 2
sin

2
. 

 

3. Consider the curve described by the vector function cos ,2sinr t t t  

a. Make a large, careful sketch of the curve in the xy-plane. 

b. Draw the vectors ,  and 
6 3 3 6

r r r r  

c. Draw the vector '
4

r  and compare it with 
3 6

r r  

 

4. Recall that ˆ'
ds

r T
dt

.   

a. Use this derive that 

2

ˆ ˆ' '' '
ds

r r T T
dt

 

b. Now use the formula sinu v u v  to show how to simplify  ' ''r r  and deduce that 

2

' ''ˆ '
'

r r
T

r
 

c. Simplify 
2

' ''ˆ '
'

r r
T

r
 for  , ,0r x x f x . 

5. Consider the curve of the parabola given by 
2

4

x
y x .  

Find an equation for the osculating circle where x = 2. 

 

6. Consider the curve cos , 2 ,sinr t t t t  

a. Find the velocity, acceleration and speed of particle as functions of t. 

b. Find the normal vector as a function of t. 

c. Find the normal and tangential components of the tangent vector when t = 0. 

 

7. Paramaterize the part of the sphere 8  that lies between the planes 4 3z  and 4 3z  

a. Using cylindrical coordinates.  Includes appropriate intervals for the parameters r and θ. 

b. Using spherical coordinates.  Include appropriate intervals for the parameters θ and Φ. 

 

8. Find parametric equations for the surface obtained by rotating y = sinx about the x-axis.ghag 



 

 

This problem didn’t make the final cut, but it’s worth looking at:  

 

 A ladybug is climbing on a Volkswagen Bug (= VW). In its starting position, the surface of the VW is 

represented by the unit semicircle x
2 

+ y
2 

= 1, y ≥ 0 in the xy-plane.  The road is represented as the x-

axis. At time t = 0 the ladybug starts at the front bumper, (1, 0), and walks counterclockwise around the 

VW at unit speed relative to the VW. At the same time the VW moves to the right at speed 10.  

a) Find the parametric formula for the trajectory of the ladybug, and find its position when it reaches 

the rear bumper. (At t = 0, the rear bumper is at (−1, 0).)  

b) Compute the speed of the bug, and find where it is largest and smallest. Hint: It is easier to work 

with the square of the speed.  

 



Math 2A – Vector Calculus – Fall ’09 – Chapter 10 Test Solutions 

 

1. Show that the parameterization of the intersection of the cylinder x
2
 + y

2
 = 1 with the parabolic 

sheet z = 2xy can be parameterized by cos ,sin ,sin 2r t t t t . 

SOLN:  2 2 2 2cos sin 1x y t t  follows directly from the Pythagorean identity. 

 2xy = 2cos(t) sin(t) = sin(2t) = z is immediate from the double angle identity for sine. 

 

2. Suppose the position (in meters) of a particle at time t (in seconds) is given by  

cos2 ,cos ,sinr t t t t  (note that this is, like #1, a “pringle” shape) 

a. Simplify an expression for the speed of the particle at time t. 

SOLN:  
2 2 2 2' 2sin 2 sin cos 4sin 2 1v t v u u u u  

b. Find the distance the particle has traveled as t goes from 0 to π. 

SOLN: 2

0 0 0

1 cos 4
4sin 2 1 4 1 3 2cos 4

2

u
D u du du udu   

Since there is no elementary antiderivative, this presents a bit of a problem.  One solution is to 

introduce a new class of antiderivatives.  This is what Mathematica does, for example.  

Mathematica defines E(tm)=
2

0
1 sin

t

m u du ,  for -/2 < t< /2,  so that, in Mathematica you 

enter  

                                            ,  

it returns  

                                                         

Now, by symmetry, the integral from 0 to  is 4 times the integral from 0 to /4.  Thus, 
/4

2

0
4 1 4sin 2D u du simplifies in Mathematica to  

                                                             ,  

which when approximated yields about 5.27037, a result that comports with the graph of the 

integrand shown below: 
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3. Consider the curve described by the vector function cos ,2sinr t t t  

a. Make a large, careful sketch of the curve in the xy-plane. 

b. Draw the vectors ,  and 
6 3 3 6

r r r r  

c. Draw the vector '
4

r  and compare it with 
3 6

r r  

SOLN:  The idea here is that 

' ' 6 3 12 13 6
' , 2 ,1

4 2 2

3 6

r r

r  

This approximation is very good: 
2

, 2 0.707,1.414
2

 and 

6 3 1 1
,1 0.699,1.398

2
 

 



4. Recall that ˆ'
ds

r T
dt

.   

a. Use this derive that 

2

ˆ ˆ' '' '
ds

r r T T
dt

 

SOLN:  By the product rule, 
2

2

ˆ
ˆ ˆ''

ds ds d s ds dT
r T T

dt dt dt dt dt
 so that 

22

2

ˆ
ˆ ˆ ˆ ˆ' '' 0 '

ds d s ds dT ds
r r T T T T

dt dt dt dt dt
 where the 0 is the result of crossing two 

parallel vectors. 

b. Now use the formula sinu v u v  to show how to simplify  ' ''r r  and deduce that 

2

' ''ˆ '
'

r r
T

r
 

SOLN:  

2
2 2

2

' ''ˆ ˆ ˆ ˆ ˆ ˆ' '' ' ' ' ' ' '
'

r rds
r r T T r T T r T T

dt r
 where the second 

equality is justified by observing that, since T̂ , has constant length, ˆ ˆ'T T  

c. Simplify 
2

' ''ˆ '
'

r r
T

r
 for  , ,0r x x f x . 

SOLN:  
2 2

2

1, ' ,0 0, '' ,0 ''
ˆ '

1 '
1 '

f x f x f x
T

f x
f x

 

5. Consider the curve of the parabola given by 
2

4

x
y x .   Find an equation for the 

osculating circle where x = 2.   

SOLN:

ˆ '

'

T

r
 

3/2 3/2
2 2

22

'' 1/ 2 1

21 1 / 21 '
xx

f x

xf x

  Thus the radius of the osculating circle is 2, 

and since 
2

21
2 1

4 4

x
y x x , the 

point, (2,1) is the vertex of the parabola and 

thus the center of the osculating circle is 2 

units below (2,1) at 

 (2, –1).  Thus the equation of the osculating 

circle is (x – 2)
2
 + (y + 1)

2
 = 4.   

See the diagram at right. 

 

1 2 3 4

3

2

1

1

 

 



 

 

6. Consider the curve cos , 2 ,sinr t t t t  

a. Find the velocity, acceleration and speed of particle as functions of t. 

SOLN:  The velocity is  ' sin , 2,cosr t t t . 

The acceleration is '' cos ,0, sinr t t t  and the speed is 

22 2
' sin 2 cos 3r t t t  

b. Find the unit normal vector as a function of t. 

SOLN: The unit tangent vector is 
sin , 2,cos'ˆ

' 3

t tr t
T

r t
,  

thus the unit normal vector is 
ˆ 'ˆ cos ,0, sin
ˆ

T
N t t

T
 

c. Find the normal and tangential components of the tangent vector when t = 0. 

SOLN:  
2

2
0T

d s
a

dt
and, since the only component of the acceleration is in the normal 

(centripetal) direction
2 '' 1Na v r .   

 

7. Paramaterize the part of the sphere 8  that lies between the planes 4 3z  and 4 3z  

a. Using cylindrical coordinates.  Includes appropriate intervals for the parameters r and θ. 

SOLN:  The equation for the sphere in cylindrical coordinates is 2 2 28r z  where 8sinr .  

3
8cos 4 3 cos

2
z , so the range of  that gives the desired portion of the sphere is 

0 2  and so r ranges between 4 and 8. 

b. Using spherical coordinates.  Include appropriate intervals for the parameters θ and Φ. 

SOLN: 
5

6 6
  and 0 2  

 

8. Find parametric equations for the surface obtained by rotating y = sinx about the x-axis. 

SOLN:  The circle of radius sinx, parallel to the xz-plane and centered at (x,0,0) can be 

parameterized by y = sinx cosθ and z = sinx sinθ.   Thus the parameterization we seek is 

, , ,sin cos ,sin sinx y z x x x  


